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LYAPUNOV FUNCTIONS FOR INVESTIGATING THE GLOBAL STABILITY
OF NON-LINEAR SYSTEMS

A.B. AMINOV and T.K. SIRAZETDINOV

The sufficient conditions of the sign determinacy of a sum of polylinear
forms are obtained. From these systems the Lyapunov functions which are
used to derive the sufficient conditions of the global asymptotic stability
of the non-perturbed motion of non-linear systems are set up. At the same
time the perturbed motion is described by a set of ordinary differential
equations with the right-hand side in the form of the sum of homogeneous
polynomials. An application to the analysis of the stability of winged
aircraft is considered.

1. wWe shall first obtain the conditions of sign determinacy of a sum of the forms

m
F(x) = Z X“) (x, A(,...i'), X = (Il, ceey I,‘) = Rﬂ (1.1)
sk
where . .
X(.s) (xy Ai,...i’) == 2 “ae 2 Ai:-n'.sziu Cae Ty (1'2)
im] =i,y
g<u<... <L, <n)
is a polylinear form of degree s =2k, 2k +1,...,2m; A; ; are real numbers, k, m,s, n are

positive integers (k< m). Similar terms of the form(1.3) are derived. In form (1.2) the
terms are ordered lexicographically. .

In the sum of forms (1l.1) the forms follow each other in order of increasing or decreasing
degree of these forms. However, in any case the degree of the first and last forms in this
sum (1.1) is even, i.e. 2k and 2m. We will call these functions (1.1l) sums of forms, using
the bordered forms of even degree.

It is required to find conditions connecting the coefficients A(,,,_is. for which the sum
of forms (1.1) will be positive definite:

F(x)>0, Vx=£0; F(0)=0 (1.3)
To solve the problem we will introduce the mapping

n=al, p=2r, y=2"ze..., Y= T, (1.4)
Ynn =TI 2% Yner== 21 “TaTs, Ynes =21 To%ir ...

e Yy XL e e Ty e e YN TR In—xl'ﬁ'l, YN =‘znk

j=1,...,/\'; il,...,i,=1,..'.,n; i1<...<i',

i i, m>r>k

The sequence of values taken by the index j, and the corresponding values taken by the

group index i,i,...I,, can be represented in strictly algorithmic form. Initially the values

of the index j increase from 1 to N, for r =m. for which the group index ii,...i, Cchanges,

beginning from 41...11 with respect to the lexicographically arranged sequence. Then the
——er

m

process by which the index j increases continues for r=m —1{ etc., to r =k Thus, between
the index j and the group index i,i; ... { there is the one-to-one correspondence:

1211044, 2211...12, 3211...13,..., nz=11...1n
r m—1 w1 hr-eeud
n+1=11...122, n422211...123,
m—t

N—12(n—)n...nn, NZ2nn...nn
k—1

The overall number N of functions y; occurring in the mapping (l1.4) is calculated using
Eq./1/
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N= 2 1vra erc:lﬂ-l (1'5)

where N, is the number of terms of the form of degree r, and C;wﬂ is the number of combinations
of n+r—1 taken r at a time.

We shall formulate y= (y;, ..., yn) and shall use an abbreviated notation of the mapping
(1.4): y=y(x). It is well-known that the vectors y = (y,..., yy) form the linear space RN
/2/. We shall introduce the quadratic form in the space

N N
P=23 3 Byl Bis= B (1.6)
=1 Jym=l

We shall substitute the values ¥;,...,ynv (1.4) into the function (1.6) and reduce similar
terms. In order not to lose the connection between the indices j,, j, and the group indices
i1v+ « iy, Ipyy . . . i, Tespectively, we shall denote the coefficients B;; in the following way:

t ]
Bj,j,=Bi....i'. i1-1.1---‘, (1'7)
jl,j,=1,...,N; il....,i,=1,...,n; ilzil---in
Ja 2 iray ..o iy

where the indices i, and i, are not connected by inequalities, as occurs for the indices:

<< Ky bu<hae <. .. K, (1.8)
Identically equating the right-hand sides cof the equation obtained for P(y(x)) (1.6) and

for F(x) (1.1), we will obtain - bearing in mind the notation (1.7) - the connection between
the coefficients of the functions (1.1) and (1.6) in the form

m m
A =2~ 833 3 By =(2—8;;) 2T Bl iy, (1.9)
i fa=1, . L Ny, Lo =, 00 o s=2k,
2k+1,..., 2m
where &;; is the Kronecker delta, and I* is the symbol of summation with respect to the
permutations of the integral values of the indices i, ..., I,, for which conditions (1.8) are
satisfied.

When setting up the specific Eg.(1.9) it is convenient, in practice, to specify first
the values of the indices i, ..., i, and further, permuting the integral values of the indices
ijy... i, while preserving conditions (1.8), to write the similar terms with Bj; (=i ... i,
Jo ey . o dy), corresponding to the coefficient A‘-,_,,‘s.

Thus, when Egs.(1.4) and (1.9} hold Vx e B" dy & G,*, such that

Fx)=P(y(x) (1.10)
where G,* is the range of values of the mapping (1.4; in RM (G,* C R¥), whilst the point
vy = 0 = G,*. Therefore, property A /3/ holds for F(x) (1.1), P(y) (1l.6) and the mapping
(1.4). At the same time property B /3/ alsc holds, i.e.Vz; = 0,3y, =z %0, r=k k+1....,m

When properties A and B hold for the positive definiteness of the sum of forms F (x) (1.1)
according to Theorem 1 /3/ it is sufficient that there is a positive definite quadratic form
P (¥) (1.8). Noting the positive definite quadratic formcriterion (1.6) and expressing the coefficients
B;;, in terms of the coefficients A; ., from Egs. (1.9) wewill obtain the conditions of sign
determinacy of the sum of the forms (1.1). In particular, we canuse Sylvester's criterion /4/ or
the criterion obtained in /3/, which has a recurrent form and is simple in calculation respects.

2. We shall find the positive definite conditions of the sum of the forms with constant
real coefficients
F (x) = Azt + Anti®z + Anen’n?® + Apens,® + @2.1)
Agana®y® + Ain?)® + A1157)°7) + Agety7,? + Agppr® +
Anz® 4 Apnya, + Ayt

Mapping (1.4) has the form

Vi=38 =02 Yy = 2, B = I, Yy = (2.2)
r=4,2;N=2,N;=3 N=N, + N, =3
We shall write the quadratic form in the space of the vectors y.= (¥, ..., ¥s)
b 5
P(y)=3 3 Bii¥i¥i» Bis,=Bj; (2.3)

A=l =1
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We shall substitute the values 1y, ..., ¥y (2.2) into function (2.3) and shall reduce
similar terms. Identically equating the right-hand sides of the expression obtained for
P (y (x)) (2.3) and the specified function (2.1), we will obtain equations of the form (1.9).
Solving them, we arrive at the coefficients of the quadratic form (2.3)

Bu=Aun, Bu=-5 Ams, Bu=Aun—2B,, 2.4)
Bus= 5 Aun

Bu=Aun, Bu=- Am, Bu=-g Auz—Bys,

By = o Aue— By

Bu=-— Am. Bu=4n, Bu=-—1 Au. Bu=An

where the real values B,,, B;;, By, are free and are used to guarantee the positive definiteness
of the quadratic form (2.3).
For the positive definiteness of the quadratic form (2.3) according to the criterion of
/3/ it is necessary and sufficient that the following real numbers occur:
t—1

1
bij= o (Bu - g buh;‘) (2.5)
i=1, ..,5 j=iLi4+1 .., ,851KkLi
satisfying the condition
bys=0, Vi=1, ..., 6 (2.6)

Substituting the values B;; (2.4) into the recurrence formula (2.5), we will obtain the
sufficient conditions for the positive definiteness of the sum of the forms (2.1) in the form
of the existence of the numbers &, (2.5), (2.6).

Bearing in mind that for the sign determinacy of F (z) (2.1) the sign determinacy of
P (y (z)) with respect to (z;, z,) is sufficient, we will show that we can relax condition (2.6).
Indeed, if the numbers b;;, which satisfy (2.5), (2.6) exist, then the guadratic form (2.3)
is positive definite and is represented in the form of the sum of the independent squares /4/

1] ) 2
Py)=3 (,21 bisys) @0

which can be checked by substituting &;; (2.5) into the quadratic form (2.7). Substituting
the values y;,...,Ys (2.2) into function (2.7) and bearing in mind Eq. (1.10), we will obtain
a representation of the specified sum of the forms (2.1) in the form

F(x) = (byz)? + bamiz, + biaxy® = byay + by1)* + (2.8)
(bypy 7y + byaz® + byuzy + byyay)® +
(basZe® + baaty - bastp)? — (b37y + besa)? + (bsety)?

The last two squares of the linear forms (r = 1) in the sum (2.8) form a positive definite
quadratic form with respect tc (r;.71,) ané guarantee the positive definiteness of the function
F(x) (2.8) under the condition

by 5= 0, bys#= 0 (2.9
which is a weakening of conditions (2.6).

Thus, for the positive definiteness of the specified sum of the forms F (x) (2.1) it is
sufficient that the quadratic form P (y) (2.7) is non-negative with respect to V¥, ... ys and
positive definite with respect to the variables y, =2, ¥y =23 (2.2), which correspond to the
quadratic form (the form of degree 2r when r = 1) in the function F (x) (2.1).

On the other hand, changing the numbering of the variables of the mapping (2.2) in the
following way:

Vi =T, 4 =Ty, Uy = )% Yy = 2,25, Yy = 2} (2.10)
and substituting y;, ....y, of (2.10) into (2.7), we will obtain, bearing in mind Eq.(1.10),
F(z) = (by'z; + by'zy + by3'2)* + bifzyz + b1y'2,0) + (2.11)

(ba'x; & bag'2i? + by 1yZy + bey'z,?)? +
(03s'z)? + 632175 + byy'22%)* T (bad' 017z + bay'25%)* + (bss'ze?)?

The last three squares of the guadratic form (r = 2) in the sum (2.11) form a positive-
definite form of the fourth degree under the condition

by’ 5= 0, by 50, by’ %0 (2.12)
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and guarantee the positive definiteness of the function F (x) (2.11) /3/. Conditions (2.12) are
less rigid than condition (2.6).

Thus, for the positive definiteness of the specified sum of the forms F (x) (2.1) it is
sufficient that the quadratic form P (y) (2.7) is non-negative with respect to the variables
¥ - .., ys and positive definite with respect to the variables y, = z;%, Yy, = 2,2,, Yy = 2,* (2.10),
which correspond to the form of the fourth degree (of degree 2r when r = 2) in the function
F(x) (2.D.

3. Generalizing the conclusion of Sect.2, we will prove the theorem of the sign determinacy
of the sum of the forms F (x) (1.1). We will also obtain the recurrent form of the sign
determinacy criterion of the quadratic form P (y) (1.5) with respect to part of the variables
/5/, i.e. the necessary and sufficient condition for the gquadratic form P (y) (1.6) to be sign

determinate with respect to all the variables y,, ..., yy and sign determinate equally with
respect to N, variables YN-Np1 - - o YN. Note that N, equals the number of variables of the
quadratic form P (y) (1.6) to which, according to Eq.(1,10), the 2r -degree form in the specified
sum of the forms F (x) (1.1), where re {k, k +1,..., m}, corresponds.

Theorem 1. For the positive definiteness of the sum of the forms F (x) (1.1), bordered by
the forms of the fourth degree 2k and 2m (k< m), it is sufficient that for the mapping (1.4)
and Eg.{1.10) the quadratic form P (y) (1.6) is non-negative with respect to the variables
Yy, ..., Yy and positive definite with respect to N, variables YN-N,+1 - - -, YN, Where r takes
some value from the set (k. &k —+1,..., m}.

Proof. Suppose the conditions of the theorem hold, i.e. the quadratic form P (y) > 0 and
is positive definite with respect to N, variables y;, which are chosen using the last j=N —
N, +1,...,N. Then using one of the well-known methods /4/ we shall transform the quadratic
form P (v) (1.6) into the following sum of squares:

N-N, N 2 N N 2
Pyi= 2 (Dbyyl + 2 (2 biys) (3.1)
i=]1  j=1 |=N—Nr+1 j=1
by 0, Vi=N-—-N+1, ... Nyrelkk+1, ..., m} (3.2)
Substituting the values y,,...,yx into the function (3.1) and bearing in mind Eq. (1.10),

we will obtain a representation of the specified sum of the forms (l.l) in the form of a non-
negative part and positive definite form of degree 2r /3/. The theorem is proved.

Theorem 2. For the non-negativity of the gquadratic form P (y) (1.6) with constant real
coefficients Bj; (1., =1, ..., N) with respect to N variables y;,...,yy and its positive
definiteness equally with respect to N, variables YN-N 10 - - o YN it is necessary and sufficient
that we have the real numbers b;;, which are determined by the coefficients B;; using the
recurrence formula

1=}
b1,7=_b1iT (an_ Zbkib):;/,i (33)

k=1

i=1, N—N, =1, N—=N.+2, .. Nyj=i,i+1, ..., N, 1k<i

undexr the condition
bii7=0, Vi=N-—N,+1, ..., N (3.4)

Proof. Necessity. Suppose the quadratic form P (y)(1.6) which is non-negative with respect
to N variables y,,... Yy and positive definite with respect to N, variables YN-Noa1 -+ 0 UN is
given. Uisng one of the well-known methods /4/ we shall transform it to a sum of the squares
(3.1) under condition (3.2). In representation (3.1) we can select the numbers b;(j =1, ...,
N), such that the following equations hold:

hiyy=0,Vi=2,3,... N—N,j=1,..., N
Indeed, in the matrix
by bis s e BuNeNm C bin
bay byy LR b:, NNy +1 co ben
bN-N. 1 bN-N_. 3 -+ BN-N NN - - - BN N
0 0 Ce . bN_Nfﬂ. N-Np1 - e bN-N'ﬂ, N

“ s

0 o ... 0 coe baw
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of the coefficients b;; of function (3.1) the first N -~ N, rows are linearly dependent,
since the specified quadratic form P (y) is only sign determinate with respect to the last N,
variables. Therefore the elements of each i-th yow (i =2,3,... N— N, differ from the
elements of the first row (i = 1) arranged in that column by the constant muliplier a;{i =2,
3,....,N—N,). Consequently

N N
gx by, = a‘jgl buyy; (i=2,3,....,N—N,)

In the first N — N, terms of the sum (3.1) we shall take &, out of the brackets and
reduce similar terms. We will obtain

N N N .
p (.")=(j§ blfi'r’i) ZN (2 bisys) 3.5)

N=Np 4
blj'=b1)'( 2{ Gﬁ') N a1=1; f’-—:i,....N
-
Equating the quadratic form (1.6) and {3.5) and comparing the coefficients of identical
terms, we obtain the recurrence formula (3.3} under condition {3.4) apart from the notation.

Sufficjency. Suppose the numbers b;;, shown in Theorem 2, exist. Then the specified
quadratic form is represented in the form (3.5) under condition (3.4), whence follows the non-
negativity of the quadratic form P (y) with respect to N variables y,, ..., Yy and the positive
definiteness equally with respect to N, variables YN-N41: -+ -, Yn. Theorem 2 is proved.

4. We shall use this result to derive the sufficient conditions of global asymptotic
stability of the zero solution of a set of ordinary differential equations with its right-hang
side in the form of a sum of homogeneous polynomials

P 2l=1
—‘-;‘g.: Z (')(x agi,.. l) ﬁ——.i n, xEH" (41)

=TS

Here Xy (x, gg;..4) 15 2 polylinear form of degrees of the form (1.2) with constant real
coefficients, ap, . 1 (ll,..,, L=1,... n)are positive integers {1 {k<{I). In the forms of the
right-hand side of Eq. (4.1) similar terms are presented and arranged in lexicographic order.

To solve the problem we will use the second Lyapunov method and, in particular, the
Barbashin-Krasovskii theorem on global asymptotic stability /6/. We shall seek Lyapunov's
function in the set of negative definite functions

v(x) = — 5 Z L X2 (x, Cas,.. i,})z 42)

qme)  reek
where X (x, cat,..4,) is a pclyhnear form of degreerof the form (1.2) with the constant real
coefficients cay,.q (@=1, ..., ¥ &, ....05, =1,...,n), which form an upper triangular (NxN)-
matrix when k<r < m

Cp.n €.z ¢ - Cinean
Cap.32 © - Canmn (4_3)
0 0 =+ CNu..an

in which the last r diagonal coefficients do not equal zero, which, according to Theorem 1,
guarantees the sign determinacy of function (4.2); N is the number of texms of the sum of the
forms of degree r, wherxe r=1k,k+1,...,m. The number N is determined using Eq.(1.5).

The function v(x) (4.2) is a sum of the forms, bordered by forms of even degree 2k and
2m. Consequently, the partial derivative of the function v(x) (4.2) with respect to the
coordinate zz(f=1,...,n) is a sum of the forms, bordered by the forms of uneven degree
2k — 1 and 2m — 1. The total derivative of the function v(x) (4.2) with respect to time t
by virtue of system (4.1) has the form

p n o dz (i Mt)

LA L — (¢}

- =), 32, "d_x& = X¥(x, A(‘...(p) (4.4)
By P=2(h+k—1)

where X (x, 4. ‘) is a polylinear form of degree p of the form (1.2} with constant real
coefficients Ay . i, which are expressed by the coefficients of system (4.1) and function (4.2)
using the equatlon
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N n
*
Aa,...ap =— 2:11 egx hX V8Cai,.. i, Catpyy - Borbor 1 Bigy s fgragm (4.5)

o
Here Caiy...i, is a coefficient of the function (4.2); Caipyge B fyr, 1S the coefficient of
the term in the sum of the forms of degree r(r=k,k+1,...,m) of the function (4.2), in which
the coordinate zz is constained; g 1is the degree of the coordinate =z in this term, equal
to the number of repetitions of the index iy =f( + 1< y<2r— 1) in the coefficient Caipyy -

Booigrey’ OBigr...igresmy 15 the coefficient of system (4.1); D is the symbol of summation with
T, 8

respect to all the values r, s, for which 2r+s— 1 = p; Z* is the symbol of summation over

the permutations of the integral values of the indices i,,..., i, =1,...,n while preserving
the condition: B oy b KKy K Ky (= B+, my s =2k — 1,
2h, .. L, 2l =1 p=2r +s—1).

We shall obtain the conditions of positive definiteness of the function dv'dt (4.4),
using Theorem 1. We shall introduce the mapping

I+m-1 t+m~2g h+k-1
=2 HN=I; Ta..., Y=45Th.. Ti, YN=In (4.6)

F=1 . Novia, By, . .dg=1, ... omld+m~12¢>h+k—1
i.e. between the index j and the group index iji,, ... I there is a one-to-one correspondence.
According to Eg. (1.5)

4m—1
M=F%ﬂm’m=dw‘ (4.7)
We shall write the guadratic forr in the space RY of the vectors y = (y.....yn)
Ne AN,
Py(y)= j§1 le B85 Bi= B, (4.8)

the coefficients of which are connected with the coefficients of the function dvdt (4.4)
using equations similar to Eg.(1.9)

N\ *
Ao, =02=0; ¥ S* B = (4.9)
g=h+k—1
Hmer
(" 6]0:) 2 E Bn LTS POSTRN
=r—k—1 § b
hhjr=1,....Noy 1 ~71=1«---‘”»
p=2—k=1),....2(0—m—1)
where I* is the symbcl of summation over the permuations of the integral values of the indices
i, .... i, for which the following conditions hold: sl g gy <L, (W2 g
1SN SUPE A N

According to Thoerem 1, for the positive definiteness of the sum of the forms dvdr (4.4)
it is sufficient that the quadratic form P¢(y) (4.8 is non-negative with respect to Ny variables
Y. - - .. Yx, and pesitive definite with respect to N, variables yy_w.1 ..... Yn (4.6), to which
corresponds the form of degree 2¢ in the function dvdt (4.4), where g takes some value from
the set (h —k—4t h—Fh ..., 1 —m—1}.

Suppose D ; (ags, .-.cu,)m,}) are the coefficients of the gquadratic form (4.8), determined
from Egs. (4.5) and (4.5); N, is the number of variables YNeNgae e Uy, in the guadratic form
Py (y) (4.8); the numbers N. N, A, are calculated using Egs.!1.5), (4.7); A,! are positive
integers, determined using the specified system (4.1). Then, applying to the quadratic form
Po (¥} (4.8) the sign determinancy criterion proved in Theorem 2, we arrive at the following

statement.

Theorem 3. For the glcbal asymptotic stability of the zero solution of the set of
ordinary differential Eq.(4.1) it is sufficient that we have the elements Cai, ... 4, (x=1,.... N
e b =1...mkLrm of the real non-singular (N x N)-matrix (4.3) and the real
numbers b;;, which are determined by the coefficients B;; using the recurrence formula

1 1—1

bli == b [BU (aﬁi,...is- Cai, ..ir) - Z bkzkaJ (410)
i k=1

i=1, ..., Napj=i i+ .. Ntk

under condition
b, =0, Vi= N, — Ne+1, Ne— N +2, .0 N, 4141
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where ag;..i, B=1...m 6....,4,=1,...,n s§=2h—1,2h ...,20 —1) are the coefficients
of system (4.1).

Proof. Suppose the real numbers shown in Theorem 3 exist. Then the total derivative
dvidt (4.4) of the negative definite function (4.2) with respect to time t by virtue of
system (4.1) is a sum of forms, bordered by forms of even degree. According to Theorem 1,
for the positive definiteness of the function dv/dt (4.4) it is sufficient that the quadratic

form Py (y) (4.8) be non-negative with respect to N, variables y,, ..., yy, and positive
definite with respect to N, variables YN No+1o -« oo YN, Theorem 2 gives the necessary and
sufficient condition of non-negativity of P, (y) (4.8) with respect to N, variables ¥, ..., Un,

and positive definiteness equally with respect to N, variables YN-N+1. YN,

Note that the form of degree 2¢, which will guarantee the positive definiteness of the
function dv/dt (4.4), is unknown in advance. The number g is thereby unknown. Therefore we will
give values from 1 to N, to the index i in Eq.(4.10) instead of the values 1, Ny— N -+ 1,..
Ny, determined in Theorem 2, i.e. in the proof of the theorem the class of functions (4.4)
from which the positive definite sum of the forms is sought is extended.

Thus, the existence of the numbers by, (4.10) under condition (4.11) is a sufficient
condition for the positive definiteness of the function dv/dt (4.4), and this means the
sufficient condition of global asymptotic stability of the zero solution of system (4.1) /6/.
The theorem is proved.

<

Note. 1In the proof of Theorem 3 the numbers k and m (k< m) are regarded as fixed. In
general, they are chosen from the natural series, which produce a wide class of Lyapunov
functions (4.2).

Corollary. For the asymptotic stability of the zerc solution of a set of linear differentia
eguations with constant coefficients it is necessary and sufficient that the conditions of
Theorem 3 hold with

s=h=1l=1, r=k=m=1, N=N,=N,=n, ¢g=1, p=2 (4.12)

Proof. Necessity. Suppose system (4.1) when s=~h=1[!=1 has an asymptotically stable
zero solution. Then all the roots of the characteristic equation have negative real parts and
according to Lyapunov's thoerem /6/, whatever the previously specified positive definite
guadratic form X‘”(z,Ai,L) there exists one and only one negative definite quadratic form (4.2),
which satisfies Eqg.(4.4) when p= 2. The existence of the (¥ X N)-matrix (4.3) when N=an
and the numbers &; (4.10), (4.11) now follows from the criterion of sign determinancy of the
quadratic form in /3/.

Sufficiency. The procf of the sufficiency of the corcllary is similar to the proof of
Theorem 3 under conditicn (4.12).

An analysis of the stability of the zerc solution of system (4.1) on the basis of
Theorem 3 can be carried out in the follcwing order.

1¢, From the specified syster (4.1) the powers of s= 2k — 1,2k, ... 2l — 1 polylinear
froms, on the right-hand side of this system, and the number n, are determined. Hence we
obtain the numbers #h, [

2%, The values k, m (k< m) are chosen from the natural series of positive integers,

39, N is calculated using Eq.(l.5).

4°. The upper triangular non-singular (N x N)-matrix (4.3) of the real numbers Catped,s
a=1,.. ., Nii,,.. i, =1,..,nmr=kk—1, ..., m is specified arbitrarily,

56, N, and N, are calculated using Eq. (4.7} for all g.

6°. All the coefficients A4; 4 are determined using Eq. (4.5).

7°. The coefficients B;, (ji, jo=1. ..., Ny are determined from the set of linear Eq.

8°. The real numbers b;; are determined using Eq.(4.10’ and condition (4.11l) is verified.
9%, If all the numbexrs b;; of Ster 8 exist and satisfy condition (4.11), a conclusion
is drawn: the zero solution of the specified system (4.1) is globally asymptotically stable.
Otherwise the chosen Lyapuncv function v (r) (4.2) does not enable us to establish the
stability of the motion and we should return tc Step 2, choose other values k, m and repeat
the calculation process. Note that the element of arbitrariness is also contained in Steps
4 and 7, to which we sould also return as necessary.

Example. We shall examine the stability of the longitudinal motion of an aircraft bearing
in mind the non-linearity of aerodynamic coefficients and non-linear connections between the
angle of attack a =3z and the pitch velocity o,= 1z,, We shall consider the equations of the
perturbed motion in the form /7/

d:ﬁ 0= a1 - GpoTy T "r.u’lz + 85,0172 - am,.,zz’ — (4.13)

gy T2’ = Bgy BT F @ TaTe? £ B =1.2



682

We shall obtain the global conditions of asymptotic stability of the zero solution of
system (4.13) for constant values of the coefficients,

Following the proposed order of the investigation, we shall obtain an=2 k=1, 1=2, s= 1, 2,
3. We shall specify k= m=1, which corresponds to the gquadratic form (4.2). Since r=k=1,
then N =Cp,, =2 The (N X N)-matrix (4.3) has the form

ch 1z}
0 c,,’

Wwe shall calculate N, when ¢={,2. We shall obtain N, =2, N,=3, then N,=35 Using Eq.
(4.5) when p=2,34 and yy=1 we will obtain coefficients of the function of the form (2.1)

Aun = —tnteny — fifynn A = —6s%ge — it (414
30108012 — (€12 + co®) dppye <.y A = =ty — 08y, 4,
= gy — Oty Oy — (60t + cp?) gy - o) Agp =
—enyfiatiy — (62° -+ cf) 85
Using Egs. (4.9) we willobtain the coefficients B}.‘}' (1. 7z =14, ..., 5. These equations are
solved in Sect.2. The sclutions of B;; have the form (2.4) and are expressed by the coefficients
(4.14) .
Using Eqgs.{(4.10) we will obtain the numbers b,;

P g = _.E- _— _?1_3 —- _.B—l!- = ..B;E’..
by= B bu=3=, ba=pE, bu= B te=gn (4.15)

. 1 1
by = (Bu— bt Y, bn= T (Br— bubs), bu= Ty (Bu — b
1 ;
byy = T (Bzy ~ bugbyy',  bas = = (Bay — lng? w byg®)'

1 1
by = Tor (Bag — bigbyy = baghgg),  bgy = o (Byy — bigbis — bysbys)

by = - (Bas — bu® — by® o~ bsl’)”'

1
by = T (Bus ~— brbyg — baahas — bagbsg)
bog= 5= (Bag — bag? — byt — by — b

Now it is necessary to verify condition (4.11). When N;=2 we have the order of variables
(2.2) and condition (2.9). When N,=13 we have the order of variables (2.10) and condition
(2.12) .

The existence of the numbers (4.15) under condition (2.9) or (2.12) signifies that the
zero solution of system (4.13) is globally asymptotically stable.
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